I previously imaged this deep space target back in the summer of 2015. I was using a modified DSLR camera with a camera lens on a basic tracking mount, and not a whole lot of knowledge on what exactly I was doing. At the time I was quite pleased with the result, although my interpretation of this target was not nearly as appealing as many of the other image I have seen. This summer I decided that I wanted to upgrade my imaging equipment. DSLR cameras capture all three color channels (red, green, and blue) at the same time, and give the photographer very little choice over which types of signal he or she wishes to collect. DSLR cameras are also inherently inefficient at collecting the faint signals that dominate much of the night sky. After all, when we look up at night with our eyes, the backdrop of the stars is primarily black with the exception of some features of the Milky Way when observed at dark sites. One of the biggest drawbacks of imaging with a DSLR is that there is a fair amount of noise present, introduced by the electronics at the time of capture as well as thermal noise created by the heat generated by long exposures. While the astrophotography community is small compared to mainstream genres of photography, there are many clever companies out there that make equipment designed to overcome the challenges I have just described.

~Click Image for a Larger View~
I decided to purchase a dedicated astrophotography camera produced by the company ZWO. This Chinese company is a pioneer in budget minded consumer cameras designed for imaging the night sky. I settled on the ZWO ASI 1600MM-Cool. This camera has a 16 megapixel micro 4/3 CMOS sensor (smaller than my DSLR) that images in monochrome and has a built in cooling module to combat the thermal noise generated by long exposure capture. Additionally, because this camera has been designed for capturing faint signals, the noise generated by the electronics is also very minimal. With such low noise characteristics it does a marvelous job at capturing the faint signals emitted by deep space objects.
Being a monochrome camera, the sensor does not have the bayer matrix that DSLR cameras have, and as such it is much more sensitive than traditional cameras. To generate color images, special filters must be fitted in front of the sensor to ensure only specific wavelengths of light are passed through. In the case of this image I used red, green, blue, and luminance filters and captured each of these color channels separately. Once I had collected all the data I needed, I used software to combine the channels to create a full color image of The Elephant’s Trunk nebula.
The Elephants Trunk Nebula is located within the constellation of Cepheus. It is part of a large emission nebula complex located approximately 2400 light years away. The trunk itself is believed to be an active star forming region with relatively young stars that are only a hundred thousand years old. These do not sound like very young stars, but when you consider that a star lives to be a couple billion years old, 100,000 years is indeed very young. If these stars were humans, they would only be about 1 to 2 days old. IC 1396 was discovered in 1893 by E. E. Barnard.

~Click Image for a Larger View~

~Click Image for a Larger View~
ZWO ASI 1600MM-C, TS 8″ PowerNewt Telescope , f2.8, 30 second exposures (80 each of R,G,B and 450 of IDAS LPS D1) for a total of 5.75 hours exposure), Gain 76, Orion Altas EQ-G, Auto Guided with SSAG-Pro 50mm Guidescope, PixInsight, Lightroom. Dark, Bias and Flat Frames taken for calibration.
Would you like to be notified when the next post is published? Subscribe here:
Ann Essy
2 Oct 2016Chris
I so very much appreciate the Elephante Trunk nebula it is facinating and your description of how you arrive at these photo’s is outstanding for us novices – equating a stars age to a humans – facinating. The color’s out there are outstanding – yes just looking up its black and white to us. I really needed a pick me up-have had a few surgeries and am a little down -You sure me gave one.
Please give my hello’s to your wife – Lee and Annie.
Just a little courious if you were looking at the same nebula from here in Iowa would it look different ?
Thank’s again. I so enjoy your mailings.
My best to all. Annie.
Chris R White
8 Oct 2016Annie,
Thanks so much for your kind words! I will definitely pass on your hello to my in-laws. To answer your question about location: Yes, all of these deep sky objects would look the same if photographed from Iowa or anywhere else in the world. Of course, there are variables such as light pollution, atmosphere, etc that can introduce different challenges into the process, but the object itself would be the same. Many objects will not change in years or even thousands of years. Time is a totally different beast with respect to objects that are so vast. Many of these objects are hundreds or thousands of light years across in size. Essentially, at the speed of light it could take literally thousands of years to travel from one side to the other of some of these objects! For perspective, it only takes a few minutes for light from the sun to reach Earth. Enjoy, and mend well!
Ann Essy
7 Oct 2016Chris
My phone did a lock up and in my attempt I accidentally hit the unsubscribe to your gallery. Please excuse me. I do want to continue to recieve your mailings.
Would you please add me back.
Thank you. Ann Essy
annme46@gmail.com